05.02.2025

Skyrmionen in Echtzeit simulieren

Die Simulation der Skyrmion-Dynamik gelingt jetzt auch auf experimentell relevanten Zeitskalen.

Skyrmionen sind nanometer- bis mikrometergroße magnetische Wirbel, die sich wie Teilchen verhalten und durch elektrische Ströme bewegt werden können. Diese Eigenschaften machen Skyrmionen zu einem hervorragenden System für neuartige Datenspeicher oder Computer. 


Abb.: Magnetooptische Mikroskopaufnahme eines Skyrmions in einem Ring...
Abb.: Magnetooptische Mikroskopaufnahme eines Skyrmions in einem Ring magnetischen Materials: Die wegen Materialfehlern ortsabhängige Energie wird von den Simulationen hervorragend reproduziert und ist im äußeren Graphen hochaufgelöst dargestellt.

Quelle: M. A. Brems / T. Sparmann

Weitere Nachrichten zum Thema

Photo
Photo
Photo

Um solche Geräte zu optimieren, ist es jedoch meist zu rechenaufwendig, die komplizierte interne Struktur der Skyrmionen zu simulieren. Ein möglicher Ansatz ist die effiziente Simulation dieser magnetischen Wirbel als Teilchen, ähnlich der Simulation von Molekülen in der Biophysik. Bisher fehlte jedoch eine Umrechnung zwischen Simulationszeit und Echtzeit im Experiment.

Um dieses Problem zu lösen, haben sich an der Johannes Gutenberg-Universität Mainz (JGU) die theoretische Gruppe von Peter Virnau und die experimentelle Gruppe von Mathias Kläui zusammengetan. Das Vorgehen zur Bestimmung der Zeitumrechnung vereint experimentelle Messtechniken mit Analysemethoden der Statistischen Physik.

„Wir können jetzt nicht nur die Dynamik der Skyrmionen quantitativ vorhersagen, die Simulationen sind auch ähnlich schnell wie die Experimente“, sagt der theoretische Physiker Maarten A. Brems, der die Methode entwickelt hat. „Die Vorhersagekraft der neuen Simulationen wird die Entwicklung von Skyrmion-basierten Anwendungen entscheidend beschleunigen“, freut sich Mathias Kläui, „gerade in Bezug auf neuartige, alternative energiesparende Computerarchitekturen, die unter anderem im Profilbereich TopDyn der Johannes Gutenberg-Universität im Fokus stehen.“ 

JGU / DE


Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Jobbörse

Physik Jobbörse in Regensburg
Eine Kooperation von Wiley und der DPG

Physik Jobbörse in Regensburg

Regensburg, 18.-20.03.2025
Die Präsentationen dauern jeweils eine Stunde, am Ende der Veranstaltung ist Zeit für Q&A eingeplant.

Meist gelesen

Themen