12.02.2013

Supraleiter mit verblüffenden Eigenschaften

Magnetische Wechselwirkungen sind für eisenbasierte Hochtemperatur-Supraleiter von grundlegender Bedeutung.

Konventionelle Supraleiter brauchen sehr niedrige Temperaturen. Dann können diese Materialien Strom ohne Widerstand leiten, was z.B. technische Anwendungen mit besonders starken Magnetfeldern wie Teilchenbeschleuniger oder medizinische Geräte ermöglicht. In jüngerer Zeit richtet sich das Interesse der Forschung auf die Hochtemperatur-Supraleiter. Diese Supraleiter leiten den Strom verlustfrei schon bei höheren Temperaturen. Deshalb sind Forscher und Forscherinnen immer auf der Suche nach neuen Materialen, die bei möglichst hohen Temperaturen supraleitend sind. 2008 wurden neuartige Hochtemperatur-Supraleiter aus Eisen entdeckt. Diese Supraleiter kommen hauptsächlich in den Legierungen mit Eisen-Arsenid, Eisen-Phosphor und Eisen-Selenid vor.

Abb.: Indem die Forscher den Energieunterschied zwischen einfallender und gestreuter Röntgenstrahlung bestimmen, können Sie Informationen über magnetische Fluktuationen gewinnen. (Grafik: PSI/M. Fischer)

Wissenschaftler des Paul Scherrer Instituts in Villigen haben zusammen mit chinesischen und deutschen Forscherkollegen nun neue Erkenntnisse zu dieser Klasse von Supraleitern gewonnen. Die jüngsten, mithilfe der Röntgen-Spektroskopie gewonnenen Resultate tragen zu einem vertieften Verständnis dieser Supraleiter bei. Bei ihren Untersuchungen verglichen die Forscher eine supraleitende Materialprobe mit einer Probe des zugehörigen Basismaterials, das nicht supraleitend ist. Das Basismaterial – im vorliegenden Fall eine Barium-Eisen-Arsenid-Verbindung – wird supraleitend, indem Forscher es mit einer bestimmen Menge von Kalium-Atomen versetzen. Bei diesem Einbringen von Fremdatomen wird das Basismaterial mit Löchern dotiert. Diese Lochdotierung mit Kalium führt im Material zu Stellen mit fehlenden Elektronen, was die Kristallstruktur und die elektrische Leitfähigkeit beeinflusst.

Die Forscher interessierten sich insbesondere für die dynamischen magnetischen Eigenschaften von Basismaterial und Supraleiter. Dazu regten sie in den Materialproben magnetische Fluktuationen an. Mit magnetischen Fluktuationen (auch als Spinwelle oder Magnon bezeichnet) geht eine Umorientierung der benachbarten Elektronenspins einher, die sich wellenartig in der Materialprobe fortsetzt. In dem Basismaterial sind Spinwellen leicht und deutlich nachweisbar.

Die Forscher wollten nun wissen, ob dies auch für die dotierten, supraleitenden Materialproben gilt. Auf den ersten Blick könnte man vermuten, dass die „Störlöcher“ der Lochdotierung die Spinwellen stark dämpfen und die magnetische Ordnung der langreichweitig geordneten Spins aufbrechen. Doch die PSI-Forscher gelangten zu einem anderen Befund: Die Spinwelle wurde im Supraleiter kaum gedämpft, sie ließ sich fast mit derselben Intensität nachweisen wie im Basismaterial. „Wir haben gelernt, dass die magnetischen Fluktuationen im supraleitenden Material praktisch gleich stark auftreten wie im Basismaterial. Die Lochdotierung mit Kalium führt zu keiner wesentlichen Störung der Spinwellen“, fasst PSI-Forscher Thorsten Schmitt das Resultat zusammen.

Die dynamischen magnetischen Eigenschaften von Basismaterial und optimal dotiertem Supraleiter sind bei eisenbasierten Hochtemperatur-Supraleitern also sehr ähnlich. „Wir deuten diese erstaunliche Tatsache so, dass die magnetische Wechselwirkung am Übergang zur supraleitenden Phase beteiligt sein kann. Wir sind gerade dabei, unsere Methode noch weiter zu verbessern, um auch sehr kleine Änderungen der magnetischen Eigenschaften, die eventuell beim Übergang in die supraleitende Phase auftreten, nachweisen zu können“, sagt Schmitt.

Schmitt und seine Forscherkollegen leisten mit ihrer Arbeit einen wichtigen Beitrag zum Verständnis der Hochtemperatur-Supraleitung. Supraleitung entsteht nach gängiger Auffassung dadurch, dass zwei Elektronen zu einem sogenannten Cooper-Paar „zusammengeklebt“ werden. Bei Hochtemperatur-Supraleitern könnte die magnetische Wechselwirkung für die Bindung der Elektronen-Paare verantwortlich sein. „Die Spinwellen sind dafür der heisseste Kandidat“, sagt Thorsten Schmitt.
Für ihre Untersuchungen nutzten die Forscher die ADRESS-Strahllinie der Synchrotron Lichtquelle Schweiz, eine Grossforschungsanlage am Paul Scherrer Institut, die Röntgenlicht von sehr hoher Intensität für wissenschaftliche Experimente zur Verfügung stellt. Dabei wurden die dynamischen magnetischen Eigenschaften von Basismaterial und Supraleiter mit resonant-inelastischer Röntgen-Streuung (Resonant Inelastic X-ray scattering, RIXS) untersucht. Bei dieser Spektroskopie-Methode wird das untersuchte Material mit Röntgenlicht bestrahlt. Das Röntgenlicht regt in der Probe eine Spinwelle an – und verliert dadurch Energie. „Vergleicht man die Energie des abgelenkten mit jener des eingestrahlten Lichts, kann man aus der Differenz auf die Eigenschaften der Spinwellen schliessen“, sagt Kejin Zhou, der diese Messungen im Rahmen seiner Postdoktorandentätigkeit am PSI durchgeführt hat.

Die PSI-Forscher wollen ihr Verständnis der Hochtemperatur-Supraleiter weiter vertiefen. Dazu gehören Experimente bei verschiedenen Dotierungszuständen in jenem Grenzbereich, in dem die Eigenschaft der Supraleitung einsetzt. Geplant sind auch Untersuchungen von weiteren Klassen von eisenbasierten Supraleitern.

PSI / PH

Anbieter des Monats

Dr. Eberl MBE-Komponenten GmbH

Dr. Eberl MBE-Komponenten GmbH

Das Unternehmen wurde 1989 von Dr. Karl Eberl als Spin-off des Walter-Schottky-Instituts der Technischen Universität München gegründet und hat seinen Sitz in Weil der Stadt bei Stuttgart.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen