Virgo-Detektor entdeckt Gravitationswelle
Signal wurde durch die Verschmelzung von zwei schwarzen Löchern erzeugt.
Die Beobachtung von Gravitationswellen wird allmählich zur Routine: Erneut haben Forscher diese von Albert Einstein vor hundert Jahren vorhergesagten Kräuselungen der Raumzeit registriert. Doch dieses Mal war neben den beiden US-amerikanischen Advanced-Ligo-Observatorien, die alle drei bisher registrierten Gravitationswellen entdeckt hatten, auch der italienische Virgo-Detektor im Spiel. Am 14. August um 12:30:43 Uhr MESZ beobachteten sämtliche drei Anlagen das Signal GW170814, das durch die Verschmelzung von zwei schwarzen Löchern erzeugt wurde.
Abb.: Signal aus dem All: Zwei schwarze Löcher mit 31 und 25 Sonnenmassen verschmelzen und senden dabei Gravitationswellen aus. Die Farben in dieser Simulation charakterisieren die Stärke des Feldes. (Bild: S. Ossokine, A. Buonanno, T. Dietrich, AEI / R. Haas, NCSA)
Große Freude herrscht auch bei den Wissenschaftlern am Max-Planck-Institut für Gravitationsphysik an den Standorten Hannover und Potsdam. „Die Gravitationswellen-Astronomie entwickelt sich rasant. Mit einem dritten großen Detektor können wir die Position und die Entfernung der Quellen von Gravitationswellen sehr viel genauer bestimmen“, sagen übereinstimmend Alessandra Buonanno und ihre beiden Kollegen Bruce Allen und Karsten Danzmann. „So können wir effizienter nach elektromagnetischen sowie Partikel-Signalen der Quellen suchen und gemeinsam das neue Zeitalter der Multi-Messenger-Astronomie vorantreiben.“
Im Fall von GW170814 suchten insgesamt 25 Observatorien im elektromagnetischen Spektrum, und zwar im Bereich von Gamma- und Röntgenstrahlung, sichtbarem Licht, Infrarotstrahlung und Radiowellen, ebenso nach Neutrinoemissionen. Zwar fand keines der Instrumente ein Signal – was aber den Erwartungen für stellare schwarze Löcher entspricht. Die beiden schwarzen Löcher besaßen vor ihrer Vereinigung 31 und 25 Sonnenmassen. Das resultierende schwarze Loch hat 53 Sonnenmassen – drei Sonnenmassen wurden in Gravitationswellen umgesetzt. Das Signal erreichte den Ligo-Detektor in Livingston rund acht Millisekunden vor dem in Hanford und etwa 14 Millisekunden vor Virgo in der Toskana. Aus der Kombination dieser Laufzeitunterschiede ließ sich die Richtung zur Quelle berechnen.
So gelang es, GW170814 auf einen Bereich von 60 Quadratgrad am Südhimmel zwischen den Sternbildern Eridanus und Pendeluhr zu lokalisieren. Der Vergleich der gemessenen Wellenform mit Vorhersagen der Allgemeinen Relativitätstheorie wiederum lieferte eine Entfernung von ungefähr 1,8 Milliarden Lichtjahren. An Entdeckung und Datenauswertung beteiligt waren auch dieses Mal Wissenschaftler aus dem Max-Planck-Institut für Gravitationsphysik in Potsdam und Hannover. So betreibt Karsten Danzmann in der GEO-Kollaboration – einem Team von Forschern der Max-Planck-Gesellschaft, der Leibniz Universität und aus Großbritannien – seit Mitte der 1990er-Jahre den Gravitationswellen-Detektor GEO600 südlich von Hannover. Die Anlage ist ein Entwicklungszentrum für neuartige und fortschrittliche Technologien.
Zusammen mit dem Laser Zentrum Hannover entwarfen, bauten und installierten Max-Planck-Wissenschaftler die Hochleistungslaser im Herzen der Ligo- und Virgo-Instrumente. Entscheidende Verbesserungen im optischen Messprinzip wie Leistungs- und Signalüberhöhung wurden dabei zuerst bei GEO600 demonstriert. Zudem entwickelte diese Abteilung viele der Algorithmen für die Software zur Datenanalyse. Die Untersuchungen wurden etwa genutzt, um die statistische Signifikanz von GW170814 und dessen Parameter zu bestimmen. Außerdem trug der Großrechner Atlas, den die Abteilung in Hannover betreibt, rund 40 Prozent der Rechenleistung für die derzeit laufende Datenanalyse des zweiten Beobachtungslaufs bei.
Wie bei vorherigen wegweisenden Gravitationswellen-Beobachtungen spielte die Abteilung „Astrophysikalische und Kosmologische Relativität“ am Potsdamer Max-Planck-Institut eine entscheidende Rolle bei der Beobachtung und Interpretation von GW170814 – so durch Entwicklung und Nutzung der präzisesten Wellenformmodelle, welche die Quelle von GW170814 sowohl aufspürten als auch charakterisierten. Zudem berücksichtigten die Modelle physikalische Effekte wie exzentrische Umlaufbahnen und Gezeitenkräfte bei Neutronensternen. Das Ziel ist, bei zukünftigen Beobachtungen die Entstehung solcher Doppelsternsysteme und Materie bei extremen Bedingungen besser zu verstehen.
MPG / JOL