06.10.2023 • Energie

Wie organische Solarzellen länger leben

Europäisches Netzwerk will Lebensdauer organischer Solarzellen deutlich erhöhen.

Solarzellen aus Silizium gibt es seit rund siebzig Jahren. Solarzellen aus organischen Verbindungen sind hingegen recht neu, eröffnen für die emissionsfreie Stromproduktion aber neue Möglichkeiten. Organische Solarzellen erreichen Wirkungsgrade von bis zu 19 Prozent und sind dabei extrem dünn, leicht, und biegsam. Aufgebracht auf transparente Folie können sie in verschiedensten geometrischen Formen und Farben in Bereichen eingesetzt werden, für die siliziumbasierte Solarzellen ungeeignet sind. Ein Problem ist bislang aber die kurze Lebensdauer: Organische Solarzellen verwittern recht schnell, weshalb sie kommerziell noch kaum eine Rolle spielen. Das soll sich nun ändern: Unter der Leitung der TU Graz vereint das Netzwerk „OPVStability“ internationale Partner aus Wissenschaft und Industrie, die in den kommenden vier Jahren daran forschen, die Lebensdauer organischer Solarzellen zu erhöhen. Die Europäische Kommission fördert das Vorhaben mit rund 2,7 Millionen Euro.


Abb.: Organische Solarzellen in einer sogenannten Glovebox, in der sie mit...
Abb.: Organische Solarzellen in einer sogenannten Glovebox, in der sie mit künstlichem Sonnenlicht bestrahlt werden.
Quelle: H. Lunghammer / TU Graz

„Es gibt Tausende Materialkombinationen, mit denen man organische Solarzellen herstellen kann“, sagt Projektleiter Gregor Trimmel vom Institut für chemische Technologie von Materialien der TU Graz. „Wir wollen herausfinden, welche davon am besten geeignet sind: also besonders langlebig und dennoch effizient in der Stromausbeute.“ Zehn Forschungsinstitute in sieben Ländern werden in den kommenden Monaten je eine Doktorandenstelle schaffen, um die Entwicklungsarbeit in Kooperation mit den Industriepartnern InfinityPV, ASCA und Sunnybag voranzutreiben. „Prinzipiell haben organische Photovoltaikzellen das Potenzial, Strom ähnlich günstig zu produzieren wie siliziumbasierte Produkte“, sagt Trimmel.

Die Forscher wollen die Verwitterungsprozesse verschiedener potenziell geeigneter Materialien im Detail untersuchen. Dazu werden die organischen Verbindungen im Labor künstlichem Sonnenlicht ausgesetzt, aber auch unter realen Witterungsbedingungen in Europa sowie der Negev-Wüste getestet. Die genaue Analyse der schleichenden Degradation ist eine Herausforderung: „Organische Solarzellen sind maximal 200 Nanometer dick. Um darin Zersetzungsprodukte isolieren zu können, braucht es sehr spezielle Methoden und Instrumente“, erläutert Trimmel. 

Weiters werden auf künstliche Intelligenz und maschinelles Lernen gestützte Ansätze genutzt, um die großen Datenmengen zu analysieren, die in Hochdurchsatzverfahren generiert werden. Die Ergebnisse der Untersuchungen sollen es erlauben, detaillierte Rückschlüsse auf die chemischen Verwitterungsprozesse zu ziehen. Mit diesem Wissen werden die Forscher genauer bestimmen können, wie die Moleküle beschaffen sein müssen, um diesen Zersetzungsprozessen besser standzuhalten. Neben den praktischen Tests werden auch digitale Simulationen chemischer Verbindungen durchgeführt, um optimal geeignete Materialen für die organischen Photovoltaikzellen der nächsten Generation zu finden.

TU Graz / DE


ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen