05.02.2008

Zu kompliziert gedacht?

Mathematische Modelluntersuchungen zeigen: Unter bestimmten Bedingungen sind neuronale Netzwerke vorhersagbarer als bisher angenommen.

Zu kompliziert gedacht?

Mathematische Modelluntersuchungen zeigen: Unter bestimmten Bedingungen sind neuronale Netzwerke vorhersagbarer als bisher angenommen.

Wie empfindlich reagieren neuronale Netzwerke auf äußere Störeinflüsse? Wie genau sind Prozesse in Nervenzellnetzwerken und damit vielleicht das Denken im Gehirn vorherbestimmt? Diese Fragen haben Sven Jahnke, Raoul-Martin Memmesheimer und Marc Timme am Bernstein Zentrum für Computational Neuroscience und Max-Planck-Institut für Dynamik und Selbstorganisation mithilfe mathematischer Modelle untersucht. Ihr Ergebnis: Unter bestimmten Bedingungen sind neuronale Netzwerke vorhersagbarer als bisher angenommen.

Das Gehirn ist wohl die komplexeste Struktur, die die Evolution je hervorgebracht hat: mehr als 100 Milliarden Nervenzellen kommunizieren über ein weit verzweigtes Netzwerk miteinander. Sie verarbeiten Informationen in Form von elektrischen Impulsen. Jede Zelle verrechnet die Signale der ihr vorgeschalteten Zellen. Wann sie selbst einen Impuls sendet, hängt vom Ergebnis dieser Berechnung ab. Ein solches System neuronaler Signalweitergabe haben Timme und seine Kollegen mathematisch analysiert und ihre daraus abgeleitete Theorie anhand von Computersimulationen überprüft. Wie im Gehirn folgt auch im mathematischen Modell die Dynamik neuronaler Signalweitergabe keiner erkennbaren Ordnung – in scheinbar unvorhersehbarer Weise senden die Nervenzellen Impulse. Aber wie unvorhersehbar ist ein solches System wirklich?

Abb. 1: Hochgradig irreguläre Aktivität in neuronalen Netzwerken. Oben: Folge neuronaler Signale von 40 Neuronen (Nervenzellen) eines großen Netzwerks. Unten: Komplexe zeitliche Dynamik einer Nervenzelle und die von ihr generierten Impulse. (Grafik: Sven Jahnke, Raoul-Martin Memmesheimer und Marc Timme, MPI für Dynamik und Selbst-Organisation)

„Chaotisch“ nennen Wissenschaftler ein System, in dem geringfügige Unterschiede in den Anfangsbedingungen zu völlig verschiedenen Entwicklung führen können. Das Verhalten chaotischer Systeme lässt sich nicht langfristig vorhersagen. „Der Flügelschlag eines Schmetterlings im Amazonas-Urwald kann einen Orkan in Europa auslösen“, so veranschaulichte in den 1960ern der Mathematiker und Meteorologe Edward N. Lorenz diesen Effekt. Im Jahre 1996 zeigten Wissenschaftler an der Hebrew University in Israel in einer theoretischen Studie, dass die im Gehirn beobachtete irreguläre neuronale Aktivität ebenfalls durch ein solches chaotisches Verhalten begründet werden kann. Das Netzwerk würde demnach eine ganz andere Dynamik entwickeln, wenn auch nur ein einzelnes Neuron einen Bruchteil einer Sekunde früher oder später ein Signal aussendet. In den letzten zehn Jahren nahmen nun viele Neurowissenschaftler an, dass solch chaotisches Verhalten grundsätzlich auf der beobachteten Irregularität basiert.

Abb. 2: Chaotische oder stabile Netzwerk-Dynamik? Ist die Netzwerk-Dynamik „chaotisch“, so entwickeln sich kleine Störungen in der Abfolge neuronaler Impulse (roter Pfeil) auf lange Sicht zu großen Unstimmigkeiten (oben, vgl. graue und schwarze Impulsfolgen). Modell-Systeme neuronaler Netzwerke im Gehirn reagieren aber nur unter bestimmten Bedingungen chaotisch. Bei „stabilem“ Verhalten werden anfänglich leicht verschiedene Impulsfolgen mit der Zeit ähnlicher (unten). Ein stabiles System ist also vorhersagbarer als ein chaotisches. (Grafik: Marc Timme, MPI für Dynamik und Selbst-Organisation)

Dass dies aber nur unter bestimmten Umständen gilt und längst nicht immer der Fall sein muss, haben Timme und seine Kollegen nun herausgefunden. „Eine Kombination verschiedener neuer Methoden hat es uns ermöglicht, jeden einzelnen Impuls eines Neurons im Netzwerk zu berücksichtigen“, so Jahnke. Die Wissenschaftler konnten zeigen, dass ein neuronales Netzwerk unter bestimmten Bedingungen gegenüber kleinen zeitlichen Verschiebungen neuronaler Impulse erstaunlich unempfindlich ist. „Genügend ähnliche Muster neuronaler Aktivität entwickeln keine gänzlich unterschiedliche Dynamik, wie man das von einem chaotischen System erwarten würde, im Gegenteil, sie gleichen sich sogar langfristig aneinander an“, sagt Memmesheimer. Im Gehirn könnte dies dazu beitragen, dass bestimmte Aktivitätsmuster hochgradig präzise in der Zeit auftreten, dass also Information in solchen Netzwerken zeitlich exakt verarbeitet wird, Berechnungen genau ausgeführt werden.

Obwohl das Netzwerk unter statistischen Gesichtspunkten sehr irregulär erscheint, muss es sich dabei nicht um ein chaotisches System handeln, es kann vielmehr auch über längere Zeiträume vorhersagbar sein. „Unter welchen Bedingungen das Gehirn nun chaotisch reagiert und wann es ein vorhersagbares Verhalten zeigt, muss noch genauer untersucht werden“, so Timme. In jedem Falle ist die Dynamik neuronaler Netzwerke, auch wenn sie hochgradig irregulär ist, nicht immer so kompliziert wie lange gedacht.

Quelle: BCCN

Weitere Infos:

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen