ALICE: Testbetrieb mit Blei-Ionen beginnt
Neue Spurendriftkammer soll die Temperatur des Quark-Gluon-Plasmas bestimmen.
Wenige Sekundenbruchteile nach dem Urknall lag die gesamte Materie des Universums als Quark-Gluon-Plasma vor. Solch ein Quark-Gluon-Plasma lässt sich in Teilchenbeschleunigern für extrem kurze Zeit erzeugen, wenn man schwere Ionen kollidieren lässt. Daher sind die Kollisionen von Blei-Ionen von zentraler Bedeutung für das Alice-Experiment am Beschleunigerzentrum Cern, das die Eigenschaften von Materie, wie sie kurz nach dem Urknall vorgelegen hat, untersuchen möchte. Während einer vierjährigen Umbauphase von 2018 bis 2022 wurde der weltweit stärkste Teilchenbeschleuniger, der Large Hadron Collider am Cern, nochmals verbessert und kann jetzt deutlich mehr Bleiionen beschleunigen als zuvor. Auch der Alice-Detektor wurde in dieser Zeit ertüchtigt, um die höheren Kollisionsraten, die der LHC in Zukunft liefern wird, aufzeichnen zu können.
Hierzu war es notwendig, die Auslesedetektoren des zentralen Detektors des Experiments, der Spurendriftkammer TPC (Time Projection Chamber) komplett auszutauschen. Die Projektleitung dieses bislang zehnjährigen Unterfangens liegt bei Harald Appelshäuser vom Institut für Kernphysik der Goethe-Universität Frankfurt. Die neue TPC soll es unter anderem ermöglichen, die Temperatur des Quark-Gluon-Plasmas zu bestimmen, das während der der Blei-Blei-Kollision entsteht. Mit den jetzt am Cern durchgeführten Tests mit Blei-Ionen können die Alice-Forschenden überprüfen, ob die Auslese und Signalverarbeitung wie erwartet funktionieren.
Eine große Herausforderung sind dabei die enormen Datenmengen, die während der Messungen anfallen und allein für die TPC im Bereich von mehreren Terabyte pro Sekunde liegen. Dieser Datenstrom muss in Echtzeit mit effektiven Mustererkennungsmethoden prozessiert werden, um die gespeicherte Menge der Daten ausreichend reduzieren zu können. Eigens hierzu wurde das Rechencluster EPN (Event Processing Nodes) für das Experiment aufgebaut. Das EPN-Cluster basiert sowohl auf konventionellen Prozessoren als auch auf speziellen Grafikprozessoren. Die Leitung dieses Projekts liegt bei Volker Lindenstruth vom Institut für Informatik der Goethe-Universität. Die ersten Messungen bei der neuen Energie sind ein großer Erfolg für das Schwerionenprogramm am Cern. Harald Appelshäuser sagt: “Wir können es kaum erwarten, dass es nun wirklich losgeht mit den Messungen.”
U. Frankfurt / JOL