15.03.2022 • Quantenphysik

Dunkelzustände unter Kontrolle

Neues Verfahren kann in supraleitenden Quantenbits geschützte Quantenzustände beeinflussen.

Wissenschaftlern um Gerhard Kirchmair vom Institut für Quantenoptik und Quanten­information der Öster­reichischen Akademie der Wissen­schaften ist es zusammen mit Kollegen aus Finnland erstmals gelungen, in supra­leitenden Quantenbits geschützte Quanten­zustände – Dunkel­zustände genannt – zu kontrollieren. Die verschränkten Zustände sind fünfhundert Mal robuster und könnten zum Beispiel bei Quanten­simulationen eingesetzt werden. Das Verfahren könnte auch auf anderen techno­logischen Plattformen Verwendung finden.

Abb.: Ein Forscher­team hat ein System entwickelt, mit dem die...
Abb.: Ein Forscher­team hat ein System entwickelt, mit dem die Dunkel­zustände von supra­leitenden Schalt­kreisen in einem Mikro­wellen­leiter von außen beein­flusst werden können. (Bild: M. Juan, U. Sher­brooke)

Im Labor von Kirchmair werden supra­leitende Quantenbits an Wellen­leiter gekoppelt. Werden mehrere dieser Quantenbits in den Wellen­leiter eingebaut, wechsel­wirken diese mitein­ander und es entstehen Dunkel­zustände. „Das sind verschränkte Quanten­zustände, die von der Außenwelt völlig entkoppelt sind“, erläutert Team-Mitglied Max Zanner. „Sie sind sozusagen unsichtbar, deshalb sprechen wir von Dunkel­zuständen.“ Diese Zustände sind für Quanten­simulationen oder die Verarbeitung von Quanten­information von. Bis heute ist es aber nicht gelungen, diese Dunkel­zustände zu kontrol­lieren und zu mani­pu­lieren.

„Bisher war das Problem immer: Wie lassen sich Dunkel­zustände kontrol­lieren, die von der Umwelt völlig entkoppelt sind“, sagt Kirchmair. „Mit einem Trick ist es uns jetzt gelungen, Zugriff auf diese Dunkel­zustände zu finden.“ Sein Team hat vier supra­leitende Quantenbits in einen Mikro­wellen­leiter eingebaut und seitlich zwei Kontroll­leitungen angebracht. Mittels Mikro­wellen­strahlung über diese Zuleitungen lassen sich die Dunkel­zustände mani­pu­lieren. Gemeinsam bilden die vier supra­leitenden Schaltkreise ein robustes Quantenbit mit einer Speicher­zeit, die etwa fünf­hundert Mal länger ist als jene der einzelnen Schaltkreise. In diesem Quantenbits existieren mehrere Dunkel­zustände gleich­zeitig, die für Quanten-Simula­tionen und Quanten-Informations­verarbeitung genutzt werden können. „Im Prinzip kann dieses System beliebig erweitert werden“, so Kirchmair.

Das erfolgreiche Experiment bildet den Startpunkt für weitere Unter­suchungen von Dunkel­zuständen und deren Anwendungs­möglich­keiten. Diese liegen zunächst vor allem im Bereich der Grund­lagen­forschung, wo es noch viele offene Fragen zu den Eigen­schaften solcher Quanten­systeme gibt. Das von dem Team entwickelte Konzept zur Kontrolle von Dunkel­zustände kann prinzi­piell nicht nur mit supra­leitenden Quantenbits, sondern auch auf anderen techno­logischen Platt­formen umgesetzt werden. „Die von uns verwendeten Schalt­kreise, die wie künstliche Atome funktionieren, haben jedoch Vorteile gegenüber echten Atomen, die wesentlich schwieriger stark an einen Wellen­leiter gekoppelt werden können“, betont Kirchmair.

U. Innsbruck / RK

Weitere Infos

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen