21.03.2019

Höhenflüge für den Nachwuchs

Doppelstart von Forschungsraketen mit Experimenten von Studententeams.

Rund ein Jahr lang hatten die Studententeams aus Bremen, München und Jena auf diesen Moment hingearbeitet: Am 11. März 2019 ist um 10:20 Uhr Mitteleuropäischer Zeit (MEZ) die Forschungsrakete REXUS 25 erfolgreich vom Raumfahrtzentrum Esrange bei Kiruna in Nordschweden gestartet. An Bord dieses ersten von zwei Raketen einer Doppelkampagne befanden sich Experimente von Teams aus Deutschland sowie von der Universität Danzig und der TU Eindhoven. Die Rakete erreichte bei dem Flug eine Höhe von rund achtzig Kilometern, wobei für rund zwei Minuten Schwerelosigkeit herrschte. „Die Studierenden haben einen Gleiter für Forschung in der Atmosphäre, ein Experiment für medizinische Anwendungen und ein neues Mess-System für die Raketentechnik eigenständig entworfen, getestet und gebaut", erläutert Michael Becker, Leiter des REXUS/BEXUS-Programms im DLR Raumfahrtmanagement. „Jetzt warten wir mit Spannung auf die Auswertung der Daten."

 

Abb.: Insgesamt fünf Experimente von Studenten hat die Forschungsrakete REXUS...
Abb.: Insgesamt fünf Experimente von Studenten hat die Forschungsrakete REXUS 25 in rund achtzig Kilometer Höhe gebracht. (Bild: MORABA / T. Schleuß)

Nur rund 22 Zentimeter lang ist der weltraumtaugliche Gleiter, den das Team GAME (Glider for Atmospheric Measurements and Experiments) der Ernst-Abbe-Hochschule Jena entworfen hat. Das Fluggerät soll zukünftig eingesetzt werden, um Experimente und Messungen in der Atmosphäre durchführen zu können, etwa zur Wirkung kosmischer Strahlung auf die Erbsubstanz von Zellen und für die Klimaforschung. „Wir haben das Fluggerät so konstruiert, dass es in die Raketenspitze eingebaut werden konnte und kurz vor dem Gipfelpunkt des Fluges freigesetzt wurde", so Anna Maria Büchner, Teamleiterin von GAME. „Der Mechanismus zum Auswerfen des Geräts, das geringe Gewicht des Gleiters und die Kommunikationstechnik waren dabei die größten Herausforderungen. Wir sind glücklich, dass alles so gut funktioniert hat." Während des Fluges wurden Position, Lage und Temperatur bestimmt und zur Bodenstation gesendet.

Foraminiferen sind winzige einzellige Lebewesen, von denen fast alle Arten ein Kalkgehäuse besitzen. Ihr kleines Gehäuse ist für die Erforschung von Mineralisierungsprozessen, etwa in menschlicher Knochensubstanz, von großem Interessiere. Die Kalkschale ist aber auch für die Pharmatechnik von Bedeutung: Da ihre Struktur viele winzige Kammern aufweist, kann sie beispielsweise als Vorlage für Tabletten dienen, die Medikamente kontrolliert abgeben können. „Wir wollen die Organismen in unserem Experiment FORAREX (Foraminifera Rocket Experiment) näher untersuchen und erforschen, wie sich die Zellen in Schwerelosigkeit verhalten", erläutert Nils Kunst von der Universität Bremen. „Wir haben für das Experiment ein Lebenserhaltungssystem konstruiert, das den Foraminiferen vor, während und nach dem Flug optimale Umgebungsbedingungen bietet."

Ziel von Team FLOMESS (Flight Loading Measurement System) der Universität der Bundeswehr München ist die Messung der strukturellen Belastungen, die auf die Höhenforschungsrakete während Start und Flug wirken. Dabei wird vor allem die Dehnung der Rakete gemessen. Die Ergebnisse dienen dazu, Forschungsraketen zukünftig effizienter zu gestalten und im Zuge der kommerziellen Raumfahrt ein höheres Nutzlastverhältnis zu ermöglichen.

Am 18. März 2019 ist mit REXUS 26 die zweite Forschungsrakete der Doppelkampagne gestartet. An Bord befanden sich Experimente von Studenten der TU Braunschweig, der TU Berlin, der Lulea University of Technologie, des Royal Institute of Technology KTH und der Wroclaw University of Science and Technology.

Das Team ELVIS (Exploration of Low-Velocity collision In Saturn’s rings) der TU Braunschweig wollte mit seinem Experiment der Entstehung der Saturnringe auf die Spur kommen. Ziel ist es zu verstehen, wie durch das Zusammenstoßen einzelner Staubpartikel größere Strukturen entstehen. Bei dem Experiment untersuchen die Studenten das Verhalten von kleinen Glaskugeln, die die Partikel in den Saturnringen simulieren. In der Schwerelosigkeit werden die Kugeln, die sich in einer Experimentkammer befinden, geschüttelt, so dass diese zusammenstoßen. Wenn die Kollisionsgeschwindigkeiten gering genug sind, bleiben die Teilchen aneinander haften und bilden Klumpen. Das Team will nun erforschen, bis zu welcher Größe diese Klumpen heranwachsen können und unter welchen Kollisionsbedingungen die Zusammenstöße stattfinden müssen.

Nutzlasten moderner Kleinstsatelliten, so genannter CubeSats, werden zunehmend anspruchsvoller und verlangen eine präzisere und beweglichere Lageregelung. Das Team TUPEX-6 (Technische Universität Berlin Picosatellite Experiment - 6) der TU Berlin testet hierfür eine innovative Technik, die nicht auf herkömmlichen Rädersystemen, sondern auf Kanälen (Picosatellite Fluid-Dynamic Actuators, pFDA) basiert, durch die flüssiges Metall gepumpt wird. Durch Ändern der Fließgeschwindigkeit kann die Lage des Satelliten geregelt werden. Einer der Vorteile des Systems ist, dass es durch seine flexible Form platzsparender ist als bisherige Technologien und daher mehr Raum für Nutzlasten zur Verfügung steht. Für das Experiment hat das Team ein Modell eines CubeSats mit einem solchen pFDA-Lageregelungssystem an Bord entworfen und einen Auswurfmechanismus für die Separation von der Rakete entwickelt.

Das deutsch-schwedische Programm REXUS/BEXUS (Raketen-/Ballon-Experimente für Universitäts-Studenten) ermöglicht Studierenden, eigene praktische Erfahrungen bei der Vorbereitung und Durchführung von Raumfahrtprojekten zu gewinnen. Ihre Vorschläge für Experimente können jährlich im Oktober eingereicht werden. Der diesjährige Aufruf dazu wird Mitte 2019 veröffentlicht. Jeweils die Hälfte der Raketen- und Ballon-Nutzlasten stehen Studenten deutscher Universitäten und Hochschulen zur Verfügung. Die schwedische Raumfahrtagentur SNSA hat den schwedischen Anteil für Studierende der übrigen Mitgliedsstaaten der Europäischen Weltraumorganisation ESA geöffnet.

DLR / DE

Weitere Infos

 

 

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen