24.10.2007

Platinreiche Schale, platinarmer Kern

Eine neue Klasse von Elektrokatalysatoren für Brennstoffzellen schlägt reines Platin um Längen.



Eine neue Klasse von Elektrokatalysatoren für Brennstoffzellen schlägt reines Platin um Längen.

Wasserstoff-Brennstoffzellen gelten als Automobil-Antrieb der Zukunft, kranken bisher allerdings noch an mangelnder Konkurrenzfähigkeit. An der University of Houston (Texas, USA) hat ein Team um Peter Strasser jetzt eine neue Klasse von Elektrokatalysatoren entwickelt, die helfen könnte, die Leistung von Brennstoffzellen zu erhöhen. Die aktive Phase des Katalysators bilden Nanopartikel mit einer platinreichen Schale und einem Kern aus einer Kupfer-Cobalt-Platin-Legierung. Sie zeigt eine bisher unerreichte Aktivität bei der Reduktion von Sauerstoff.

Wasserstoff-Brennstoffzellen sind eine gezähmte Version der Knallgasreaktion, bei der Sauerstoff und Wasserstoff explosionsartig zu Wasser reagieren. Damit das Ganze sanft verläuft und die freiwerdende Energie in Form von Strom abgezapft werden kann, finden die Reaktionen der beiden Reaktionspartner in einer Brennstoffzelle als zwei räumlich getrennte Teilreaktionen statt. In der einen Halbzelle nimmt Sauerstoff an einer Elektrode Elektronen auf (Reduktion), in der anderen gibt Wasserstoff Elektronen ab (Oxidation). Die Zellen sind durch Polymerelektrolyt-Membranen verbunden, über die der Stoffaustausch läuft.

Damit die Reaktion laufen kann, müssen die Elektroden katalytisch wirken. Material der Wahl für die Elektrode der Sauerstoff-Teilreaktion ist seit Jahrzehnten das Edelmetall Platin. Nun haben Strasser und sein Team ein neues Material entwickelt: Eine Legierung aus Platin, Kupfer und Cobalt, die in Form von Nanopartikeln auf Trägern aus Kohlenstoff aufgebracht ist. Die eigentliche katalytisch aktive Phase entsteht erst in situ: Wird eine zyklisch wechselnde Spannung an die Elektrode angelegt, lösen sich an der Oberfläche der Nanopartikel selektiv die weniger edlen Metallatome, vor allem Kupfer, aus der Legierung heraus. So entstehen Nanopartikel mit einem Kern aus der ursprünglichen kupferreichen Legierung und einer fast nur Platin enthaltenden Schale.

„Die sauerstoffreduzierende Aktivität unseres neuen elektrokatalytischen Nanomaterials ist bisher unerreicht – etwa vier- bis fünfmal höher als beim reinen Platin. Zudem konnten wir zeigen, wie man dieses Material in einer richtigen Brennstoffzelle in situ einsetzt und aktiviert“, sagt Strasser. Die beobachtete Oberflächenzunahme der Nanopartikel reicht als Erklärung nicht aus. Strasser vermutet, dass spezielle veränderte strukturelle Charakteristika der Oberfläche eine Rolle spielen. Obwohl die Partikeloberfläche hauptsächlich aus Platin besteht, scheinen die Abstände zwischen den Platinatomen hier kürzer zu sein als bei reinem Platin. Diese Stauchung kann durch den Legierungskern stabilisiert werden, der aufgrund des Kupfers und Cobalts noch stärker verkürzte Platin-Abstände zeigt. Zudem scheint der kupferreiche Kern die elektronischen Eigenschaften der Platinschale zu beeinflussen. Theoretische Betrachtungen haben ergeben, dass der Sauerstoff so optimal an die Partikeloberfläche binden kann und sich leichter reduzieren lässt.

Quelle: Angewandte Chemie

Weitere Infos:

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen