10.01.2025

Quantencomputer in Silizium

Entwicklung einer neuartigen europäischen Quantentechnologie startet.

Das Konsortium „Enabling New Quantum Frontiers with Spin Acoustics in Silicon“, kurz Equspace, hat 3,2 Millionen Euro aus dem Förderprogramm „Pathfinder Open“ des European Innovation Council erhalten, um die Entwicklung von Quantentechnologien auf Silizium-Basis voranzubringen. Das Projekt bringt neben dem Helmholtz-Zentrum Dresden-Rossendorf vier weitere Partner aus drei EU-Ländern zusammen und vereint Experten aus den Bereichen Spin-Qubits, Optomechanik und atomare Siliziummodifikationen, um eine neuartige Quantenplattform auf Silizium-Basis zu entwickeln.

Abb.: Im Einzelionenimplanter können gezielt einzelne Fremdatome in ein...
Abb.: Im Einzelionenimplanter „Triple Ion Beam UHV System for Single Ion Implantation“ können gezielt einzelne Fremdatome in ein Material eingebracht werden, um beispielsweise Qubits zu erzeugen.
Quelle: B. Schröder, HZDR

Obwohl Silizium das zentrale Material für klassische Computer ist, spielt es bei den gegenwärtig favorisierten Quantencomputer-Konzepten keine Schlüsselrolle. Es wäre jedoch sehr sinnvoll, die mit der Halbleiter-Technologie bereits entwickelte, mehrere Milliarden Euro teure Silizium-Infrastruktur auch zur Verarbeitung von Qubits zu nutzen. Forscher haben gezeigt, dass Donor-Spin-Qubits besonders gut dafür geeignet sind. Diese Qubits nutzen eine Eigenschaft von Fremdatomen, ihren Spin, um Informationen zu verarbeiten. Sie zeichnen sich im Vergleich zu anderen Quantensystemen durch lange Zeiträume aus, über die sie stabil bleiben, um quantenmechanische Rechenoperationen durchzuführen. Derzeit sind sie jedoch nicht das Arbeitspferd von kommerziellen Quantencomputern, da es keine geeigneten Kopplungs- und Auslesemechanismen gibt, die für eine Skalierung auf ein praktisch nutzbares Niveau verwendet werden könnten.

Equspace zielt nun darauf ab, in Europa eine langfristige Zukunft für Donor-Spin-Qubits auf Silizium-Basis zu schaffen. Die Plattform will die auf winzigen atomaren Spins basierenden Qubits über Schallwellen in schwingenden Strukturen miteinander verbinden. Außerdem kommen Laser und Einzelelektronentransistoren zum Einsatz, um am Ende der quantenmechanischen Berechnung das Ergebnis elektrisch auszulesen. Das Projekt soll eine skalierbare Lösung für alle wichtigen Aspekte einer Quantenplattform bieten: die Steuerung und das Auslesen des Ergebnisses, die Spin-Spin-Kopplung zwischen Qubits sowie die Weiterleitung von Quanteninformationen zwischen Recheneinheiten auf dem Chip. Das Endergebnis könnte eine vollständige Quanteninformations-Plattform sein, die Qubits, Verbindungselemente und skalierbare Steuer- und Ausleseelektronik umfasst.

Ein Team des Instituts für Ionenstrahlphysik und Materialforschung am HZDR bringt seine Expertise bei der atomaren Modifikation von Silizium für Quantenanwendungen ein und wird die materialwissenschaftlichen Methoden weiterentwickeln, die als Grundlage für das Projekt benötigt werden. Das Team wird dazu einen fokussierten Ionenstrahl nutzen, um ultrareines Silizium örtlich mit dem Isotop Silizium-28 anzureichern. Silizium-28 hat den Vorteil, dass seine Atomkerne im Vergleich zu vielen anderen Materialien keinen Spin haben, der mit Magnetfeldern oder dem Spin von anderen Teilchen wechselwirken und dadurch die Berechnungen stören könnte.

„Durch die gezielte Anreicherung mit speziellen Isotopen bleibt der Quantenzustand länger stabil. Das erlaubt komplexere Quantenoperationen, und die Plattform kann so perspektivisch klassische Computer sowie andere Quantencomputersysteme übertreffen“, sagt HZDR- Projektleiter Nico Klingner.

Neben der Isotopenreinigung entwickelt das Team die Einzelionenimplantation von Donor-Atomen. Damit sollen einzelne Bismut-Atome implantiert werden, deren Spin ein Zwei-Zustands-System bildet, der wahlweise nach „oben“ oder nach „unten“ zeigen kann. Die Besonderheit der Qubits besteht darin, dass bei sehr tiefen Temperaturen beide Zustände in Überlagerungen gleichzeitig existieren können: Der Spin kann sich gleichzeitig in einer Kombination aus den Zuständen „oben“ und „unten“ befinden. So können Quantencomputer viele Berechnungen parallel durchführen, was ihre Rechenleistung drastisch erhöhen kann.

Einer der Hauptvorteile von Donor-Spin-Qubits ist ihre relative Stabilität im Vergleich zu anderen Arten von Qubits, zum Beispiel solchen, die auf supraleitenden Schaltkreisen basieren. Der Spin in einem Donor-Atom ist weniger anfällig für Störungen aus der Umgebung, so dass der Quantenzustand über längere Zeiträume aufrechterhalten werden kann. Diese Stabilität ist für die Skalierung von Quantencomputern auf eine größere Anzahl von Qubits unerlässlich, ohne dass die Kohärenz oder die Präzision der Berechnungen verloren geht.

„Der Ansatz von Equspace ist von entscheidender Bedeutung, um sicherzustellen, dass Europa auf dem schnell voranschreitenden Gebiet der Quantentechnologien wettbewerbsfähig bleibt. Mit dieser Förderung baut Equspace ein starkes Forschungsnetzwerk in Europa auf, das auf Donor-Spin-Qubits basiert – eine Entwicklung, die die europäische Quantenindustrie langfristig stärken wird“, erklärt Juha Muhonen von der University of Jyväskylä in Finnland, der Koordinator des Projekts. Die Finanzierung ist Teil des Förderprogramms Horizont Europa. Das Projekt startet offiziell am 1. Februar 2025.

HZDR / RK

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Photo
28.11.2024 • NachrichtPanorama

Goodbye SOFIA

Mit einem Festakt wurde Ende November am Raumfahrtzentrum Baden-Württemberg der erfolgreiche Projektabschluss des Stratosphären-Observatoriums für Infrarot-Astronomie (SOFIA) gefeiert.

Themen