Sag mir, wie die Sternlein entstehen
Beobachtung naher Galaxien liefert großen Überblick über Stadien der Sternenstehung.
Ein Team von Astronomen, darunter Eva Schinnerer vom Max-Planck-Institut für Astronomie, hat neue Beobachtungen von nahen Galaxien veröffentlicht, die einem bunten kosmischen Feuerwerk gleichen. Die Bilder, die mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) aufgenommen wurden, zeigen verschiedene Komponenten der Galaxien in unterschiedlichen Farben. Dieser neue Datensatz ermöglicht es den Astronomen, die Positionen junger Sterne und das Gas, das sie umgibt, genau zu bestimmen. Die Kombination dieser neuen Beobachtungen mit Daten des Atacama Large Millimeter/submillimeter Array (ALMA) hilft, den Mechanismus zu ermitteln, der Gas zur Bildung von Sternen anregt.
Zwar wissen Astronomen, dass Sterne in Gaswolken geboren werden, aber was die Sternentstehung auslöst und wie Galaxien als Ganzes dabei mitspielen, bleibt ein Rätsel. Um diesen Prozess zu verstehen, hat ein Forschungsteam verschiedene nahe gelegene Galaxien mit leistungsstarken boden- und weltraumgestützten Teleskopen beobachtet und die verschiedenen galaktischen Regionen, die an der Sternentstehung beteiligt sind, untersucht.
„Zum ersten Mal lösen wir einzelne Sternentstehungsgebiete mit einer großen Vielfalt an Regionen und Umgebungen in einer Auswahl von Galaxien auf, die die verschiedenen Varianten gut repräsentiert“, sagt Eric Emsellem, Astronom an der ESO in Deutschland und der Universität Lyon, Frankreich. Er leitete die VLT-basierten Beobachtungen, die im Rahmen des Phangs-Projekts (Physics at High Angular Resolution in Nearby GalaxieS) durchgeführt wurden. „Wir können das Gas, aus dem die Sterne entstehen, direkt beobachten. Wir sehen die jungen Sterne selbst, und wir werden Zeuge ihrer Entwicklung im Verlauf verschiedener Phasen.“
Emsellem und sein Team haben nun ihren neuesten Satz von galaktischen Aufnahmen veröffentlicht, die mit dem Multi-Unit Spectroscopic Explorer (MUSE) Instrument am VLT der ESO in der Atacama-Wüste in Chile aufgenommen wurden. Sie nutzten MUSE, um neugeborene Sterne und das warme Gas um sie herum aufzuspüren, das von den Sternen beleuchtet und aufgeheizt wird und als deutlicher Hinweis auf die fortschreitende Sternentstehung dient.
Die Phangs-Kollaboration unter der Leitung von Eva Schinnerer vom Max-Planck-Institut für Astronomie (MPIA) kombiniert diese neuen Bilder mit Beobachtungen der gleichen Galaxien, die mit ALMA aufgenommen und Anfang dieses Jahres veröffentlicht wurden. ALMA, das sich ebenfalls in Chile befindet, ist besonders gut geeignet, um kalte Gaswolken zu kartieren, also diejenigen Objekte in Galaxien, die das Rohmaterial liefern, aus dem Sterne entstehen.
MUSE und ALMA ergänzen sich bei der Identifizierung und Untersuchung der Sternentstehungsgebiete im Inneren der beobachteten Galaxien. „Durch die Kombination von MUSE- und ALMA-Bildern können wir untersuchen, wie frühere Sterngenerationen den Prozess der Bildung einer neuen Sternenpopulation beeinflussen“, erläutert Ismael Pessa, Doktorand am MPIA, der im Phangs-Projekt arbeitet. „Das hilft uns, besser zu verstehen, was die Geburt neuer Sterne auslöst, verstärkt oder bremst.“ Die resultierenden Bilder sind beeindruckend und bieten einen farbenfrohen Einblick in stellare Kinderstuben in unseren Nachbargalaxien.
„Es gibt viele Rätsel, die wir entschlüsseln wollen“, sagt Kathryn Kreckel von der Universität Heidelberg in Deutschland und Mitarbeiterin im Phangs-Team. „Werden Sterne häufiger in bestimmten Regionen ihrer Wirtsgalaxien geboren? Und falls ja, warum? Und nachdem Sterne geboren wurden, wie beeinflusst ihre Entwicklung die Bildung neuer Generationen von Sternen?“
Diese Fragen können die Astronomen nun dank der Fülle an MUSE- und ALMA-Daten, die das Phangs-Team gesammelt hat, beantworten. MUSE produziert für jede einzelne Position innerhalb seines Sichtfelds Spektren – die „Strichcodes“, die Astronomen scannen, um die Eigenschaften und die Charakteristik von kosmischen Objekten zu bestimmen – und liefert damit viel reichhaltigere Informationen als bisherige Instrumente. Für das Phangs-Projekt beobachtete MUSE 30.000 Nebel aus warmem Gas und sammelte etwa 15 Millionen Spektren von verschiedenen galaktischen Regionen. Die ALMA-Beobachtungen wiederum ermöglichten es den Astronomen, etwa 100.000 kalte Gaswolken in neunzig nahen Galaxien zu kartieren und so einen beispiellos detaillierten Atlas der stellaren Keimzellen im nahen Universum zu erstellen.
Neben ALMA und MUSE sind am Phangs-Projekt auch Beobachtungen des NASA-ESA-Weltraumteleskops Hubble beteiligt. Die verschiedenen Observatorien wurden so ausgewählt, dass das Team unsere galaktischen Nachbarn bei unterschiedlichen Wellenlängen (sichtbar, nahes Infrarot und Radio) durchleuchten kann. Jeder Wellenlängenbereich betrachtet unterschiedliche Teile der beobachteten Galaxien. Ihre Kombination erlaubt es, die verschiedenen Stadien der Sternentstehung zu untersuchen – von der Entstehung der stellaren Geburtsstätten über den Beginn der Sternentstehung selbst bis hin zu der Frage, wie die neu geborenen Sterne schließlich ihre Brutstätten zerstören.
Phangs bietet zum ersten Mal die Möglichkeit, ein solch komplettes Bild zu entwickeln, indem es Bilder aufnimmt, die scharf genug sind, um die einzelnen Wolken, Sterne und Nebel sichtbar zu machen, die die Kreißsäle der Sterne darstellen. „Die scharfen MUSE-Bilder beispielsweise zeigen den Einfluss der neu entstehenden Sterne auf das sie umgebende Material. Ein solch genauer Blick hilft uns zu verstehen, wie Sterne ihre Umgebung beeinflussen, etwa durch Sternwinde“, sagt Postdoktorand Francesco Santoro vom MPIA. Er fügt hinzu: „Wir wollen vor allem untersuchen, wie solche Wechselwirkungen zum Kreislauf des Gases im interstellaren Medium, dem Rohmaterial der Sterne, beitragen und wie sie zukünftige Generationen von Sternen beeinflussen.“
Die Arbeit des Phangs-Projekts wird durch kommende Teleskope und Instrumente, wie das James Webb Space Telescope der NASA, weiter vertieft werden. Die so gewonnenen Daten werden eine weitere Grundlage für Beobachtungen mit dem zukünftigen Extremely Large Telescope (ELT) der ESO bilden, das einen noch detaillierteren Blick auf die Strukturen von Sternkinderstuben ermöglichen wird.
„So erstaunlich Phangs auch ist, die Auflösung der Karten, die wir erstellen, reicht gerade aus, um einzelne Sternentstehungswolken zu identifizieren und zu trennen. Aber sie ist immer noch nicht gut genug, um zu erkennen, was in ihrem Inneren im Detail passiert“, betont Eva Schinnerer. „Neue Beobachtungsansätze von unserem Team und anderen verschieben die Grenzen des Machbaren in diese Richtung, so dass wir noch Jahrzehnte spannender Entdeckungen vorhttps://www.imprs-astro.mpg.de/index.html uns haben.“
MPIA / DE