Seltene Erden für Hightech-Anwendungen
Sonderforschungsbereich entwickelt Materialien mit neuen optischen und magnetischen Eigenschaften.
Komplexe Materialien auf Basis von Seltenen Erden sind wichtig für viele Hightech-Anwendungen, beispielsweise für Permanentmagnete oder in Bildschirmen. Die Chemie molekularer und nanoskaliger Verbindungen der Seltenen Erden sowie ihre physikalischen Eigenschaften untersucht nun der neue Sonderforschungsbereich SFB „4f for Future“. Das Karlsruher Institut für Technologie koordiniert den Verbund, an dem auch die Philipps-Universität Marburg, die LMU München und die Universität Tübingen beteiligt sind. Die Deutsche Forschungsgemeinschaft fördert den interdisziplinären Verbund ab dem 1. Januar 2023 über vier Jahre mit mehr als zehn Millionen Euro.
Die Molekülchemie dieser Elemente ist jedoch erstaunlich wenig entwickelt. Jüngste Fortschritte auf diesem Gebiet zeigen, dass sich dies nun deutlich ändert. In den letzten Jahren haben dynamische Entwicklungen in der Chemie und Physik von molekularen Seltenerd-Verbindungen Grenzen und Paradigmen, die zuvor jahrzehntelang gültig waren, verschoben. „Mit der gemeinsamen Forschungsinitiative ,4f for Future‘ wollen wir ein weltweit führendes Zentrum aufbauen, das diese neuen Entwicklungen aufgreift und weiter vorantreibt“, sagt Peter Roesky vom Institut für Anorganische Chemie des KIT. Die Forschenden untersuchen dabei die Synthesewege und die physikalischen Eigenschaften neuer molekularer und nanoskaliger Seltenerd-Verbindungen mit dem Ziel, Materialien mit noch nie dagewesenen optischen und magnetischen Eigenschaften zu entwickeln, so Roesky.
Mit diesen Forschungen soll das Wissen über die Chemie von molekularen und nanoskaligen Verbindungen der Seltenen Erden erheblich erweitert und das Verständnis ihrer physikalischen Eigenschaften im Hinblick auf neue Anwendungen vorangetrieben werden. Neben dem neuen SFB wird die DFG auch den SFB/Transregio „Phänomenologische Elementarteilchenphysik nach der Higgs-Entdeckung” (TRR 257) für weitere vier Jahre fördern. Den Forschenden des KIT, der RWTH Aachen und der Universität Siegen geht es um ein tieferes Verständnis der fundamentalen Konzepte, die dem Standardmodell der Teilchenphysik zugrunde liegen, das die Wechselwirkungen aller Elementarteilchen mathematisch schlüssig beschreibt.
Mit dem Nachweis des Higgs-Bosons wurde dieses Modell vor zehn Jahren experimentell bestätigt. Andererseits kann das Standardmodell Fragen wie etwa zur Natur der dunklen Materie, der Asymmetrie zwischen Materie und Antimaterie oder dem Grund der Kleinheit der Neutrinomassen nicht beantworten. Im TRR 257 werden Synergien geschaffen, um die Suche nach einer umfassenderen Theorie, welche das Standardmodell erweitert, aus komplementären Richtungen anzugehen. So werden beispielsweise neue Verbindungen zwischen Flavour-Physik und der Phänomenologie an Hochenergiebeschleunigern geschaffen. Ziel des TRR 257 ist es, Wegbereiter bei der Suche nach einer möglichen neuen Physik jenseits des Standardmodells zu sein.
KIT / JOL