Vernetzte Quantenrechner
Neues Projekt für die Entwicklung von Quantennetzwerken.
Optische Quantennetzwerke bilden die Basis für zukünftige Technologien wie den Quantencomputer oder das Quanteninternet. Eine Herausforderung bei der Realisierung solcher Netzwerke ist bislang die Notwendigkeit, viele Bauteile in einem großen System miteinander zu verschalten. Wissenschaftler der Universität Paderborn wollen diese Hürde im Rahmen des Forschungsprojekts „Qinos“ –Quantenbauelemente – integriert, optisch, skalierbar –mithilfe dünner Schichten aus Lithiumniobat überwinden. Ziel ist es, ein einfaches integriertes Quantennetzwerk zu entwickeln, das die Basisfunktionalitäten großer Netzwerke demonstrieren soll. Das Vorhaben wird vom Bundesministerium für Bildung und Forschung ab September für zwei Jahre mit rund 1,9 Millionen Euro gefördert.
Für Quantenanwendungen ist Dünnschicht-Lithiumniobat (LNOI) ein vielversprechender Kandidat: „Es ermöglicht bisher nicht umsetzbare Funktionalitäten wie schnelle elektrooptische Schalter oder hocheffiziente Photonenpaarquellen. Photonen sind kleine Lichtteilchen, aus denen elektromagnetische Strahlung besteht“, sagt Christof Eigner, Projektleiter in der Gruppe für Integrierte Quantenoptik. Die Wissenschaftler entwickeln mit dem Material einen neuartigen skalierbaren Ansatz, um eine Vielzahl von funktionalen Elementen miteinander zu verbinden.
„Die herausragenden Eigenschaften von Lithiumniobat werden heutzutage zum Beispiel schon sehr häufig in der Telekommunikationsindustrie genutzt. Allerdings stoßen konventionelle Lithiumniobat-Bauteile an ihre Grenzen, insbesondere im Hinblick auf die Integrationsdichte, also der maximalen Anzahl von Quellen und Schaltern, die auf einem Bauteil kombiniert werden kann. LNOI adressiert genau diese Schwächen. So können hochpräzise Strukturen mittels Lithographie auf Substrate übertragen werden. Damit lassen sich komplexe Quantenschaltkreise mit hohem Anwendungspotenzial verwirklichen, die auf anderen Materialplattformen in dieser Form nicht umsetzbar sind“, sagt Eigner.
Die Physiker entwickeln ein Netzwerk, bei dem eine integrierte Photonenpaarquelle mit einem integrierten wellenlängenselektiven Strahlteiler kombiniert wird. Erzeugt werden die Photonen durch Laserlicht. Anschließend werden die Paare aufgetrennt und in unterschiedlichen Ausgängen für die Endnutzung zur Verfügung gestellt. Eigner: „Damit zeigen wir die effiziente Erzeugung von Quantenlicht und das Routing, also quasi das Steuern von Photonen in einem Quantennetzwerk.“
Auf Basis der im Projekt erzielten Ergebnisse könnten in Zukunft multifunktionale, anwendungsorientierte Quantenbauelemente realisiert und zu großen, komplexen Netzwerken verschaltet werden. Darüber hinaus soll durch die Einbindung von Industriepartnern die gesamte Wertschöpfungskette für die photonische Quantenhardware in die industrielle Anwendung geführt werden. Das Team rechnet bereits im nächsten Jahr mit ersten Ergebnissen.
U. Paderborn / JOL