Wie Eisen und Schwefel zusammenwirken
Biophysikalische Analytik deckt Aufbau und Synthese lebenswichtiger Proteine auf.
Rote Blutkörperchen können dank ihrer Eisenatome Sauerstoff transportieren. Auch an anderen Orten in unseren Zellen kommt das Metall zum Einsatz, wie etwa in Form von verschiedenen Eisen-Schwefel-Verbindungen. Sie sind unter anderem in Enzymen und beim Transport von Elektronen in Zellen wichtig. An der Technischen Universität Kaiserslautern (TUK) untersuchen drei Forscherteams ihre Synthese und Rolle im Stoffwechsel. Die Arbeiten finden im Schwerpunktprogramm (SPP) 1927 „Iron-Sulfur for Life“ der Deutschen Forschungsgemeinschaft (DFG) statt. Interessant können die Erkenntnisse etwa für die Biotechnologie sein, um neue Formen der Energiegewinnung zu entwickeln oder Wirkstoffe zu produzieren.
Im Rahmen des SPP 1927 untersuchen die Kaiserslauterer Forschergruppen den genauen Aufbau dieser Zentren und wie sie in die Proteine eingebunden sind. „Es gibt viele verschiedene Eisen-Schwefel-Verbindungen“, sagt Pierik. „Wir wollen unter anderem verstehen, wie sie in der Zelle synthetisiert werden.“
Bei ihrer Forschung kommen spezielle Techniken zum Einsatz: Zunutze machen sich die Forscher hierbei die magnetischen Eigenschaften des Eisens. Das Team um Pierik nutzt die Elektronenspinresonanz-Spektroskopie. Ähnlich wie bei einem Fingerabdruck erhalten die Forscher bei der Messung für die einzelnen Eisen-Schwefel-Zentren charakteristische Spektren.
Professor Schünemann und seine Arbeitsgruppe aus dem Lehrgebiet Biophysik und Medizinische Physik verwenden die Mössbauer-Spektroskopie. „Hierbei handelt es sich um ein Analyseverfahren, bei dem die Absorption von hochenergetischer Röntgenstrahlung vom Atomkern des Eisens ausgenutzt wird“, erläutert Schünemann. Mithilfe der beiden Techniken erhalten beide Teams im Anschluss ein genaues Bild über die Zusammensetzung der Metallzentren.
Komplettiert werden diese Ergebnisse durch die Arbeit von Professor Schroda und seiner Arbeitsgruppe aus dem Lehrgebiet Molekulare Biotechnologie und Systembiologie. Hier kommt die Massenspektrometrie zum Einsatz. Bei diesem Verfahren werden die Protein-Moleküle anhand ihrer Masse identifiziert und quantifiziert. „Ähnlich wie bei einem Fingerabdruck besitzt auch hierbei jedes Molekül einen charakteristischen Wert“, sagt Schroda.
Zusammengenommen erhalten die drei Forschergruppen ein genaues Bild zu den Eisen-Schwefel-Verbindungen und zu den Protein-Komplexen, in die sie eingebunden sind. Nicht nur für die Grundlagenforschung, sondern auch für die Biotechnologie sind diese Erkenntnisse interessant, beispielsweise für die Synthese von medizinischen Wirkstoffen oder für neue Formen der Energiegewinnung.
Das SPP wird von Silke Leimkühler an der Universität Potsdam geleitet und koordiniert. Ziel ist es, die genaue Rolle der Metalle zu verstehen und wie diese die Aktivität der Proteine beeinflussen. Das Programm ist nun in der zweiten Förderperiode. In der ersten Phase waren die Professoren Pierik und Schünemann beteiligt. Die beiden haben für diese Arbeiten rund 478.000 Euro von der DFG erhalten. Nun ist auch Schroda am Vorhaben beteiligt. Zusammen erhalten die drei Arbeitsgruppen rund 781.000 Euro, sodass die Forschungsarbeiten an der TU Kaiserslautern im Rahmen des SPP insgesamt mit rund 1,26 Millionen Euro gefördert wurden beziehungsweise werden.
TU Kaiserslautern / DE