08.04.2025

Zellen mit Licht in Form bringen

Wie ein optischer Reiz über chemische und mechanische Wechselwirkungen eine Formänderung der Zelle auslöst.

Eine wesentliche Eigenschaft aller lebenden Organismen ist, dass Zellen ihre Form dynamisch ändern können – ansonsten würden fundamentale Prozesse wie die Zellteilung nicht funktionieren. Einem internationalen Team um den Physiker Erwin Frey von der Uni München und Nikta Fakhri vom MIT ist es jetzt durch die Kombination experimenteller und theoretischer Methoden erstmals gelungen, die Mechanismen zu entschlüsseln, mit denen Zellen ihre Form als Reaktion auf Umwelteinflüsse dynamisch verändern – und diesen Prozess von außen zu steuern.

Abb.: Unterschiedlich verformte Zellen.
Abb.: Unterschiedlich verformte Zellen.
Quelle: J. Liu, MIT

Weitere Nachrichten zum Thema

Photo
Photo
Photo
Photo
Photo

Frühere Studien hatten bereits gezeigt, dass bei der Festlegung der Zellform die Bildung biologischer Muster durch sich selbst organisierende Proteine eine entscheidende Rolle spielt. Die Forscher untersuchten dieses komplexe Netzwerk am Beispiel der Eizellen des Seesterns Patiria miniata, die während ihrer Teilung eine charakteristische Formänderung durchlaufen. Getrieben wird diese Formänderung von zwei Enzymen: Der kleinen GTPase Rho und ihrem Aktivierungsenzym GEF. Indem sie einen mit Licht steuerbaren molekularen Schalter in GEF einbauten, gelang es den Forschern, die Formänderungen der Eizellen gezielt optogenetisch zu beeinflussen.

„Mit diesen Schalter konnten wir die Proteinverteilung in der Zelle durch Lichtreize beliebig modulieren, was zu Verformungen führte“, sagt Tom Burkart von der Uni München. „So haben wir eine große Bandbreite an Varianten erzeugt – von lokalen Eindellungen bis hin zu einer eindrücklichen Verformung zu einer quadratischen Zelle.“

Anschließend entwickelten die Wissenschaftler ein theoretisches Modell, das beschreibt, wie der optische Reiz über chemische und mechanische Wechselwirkungen eine Formänderung der Zelle auslöst. Dabei identifizierten sie zwei zentrale Mechanismen: einerseits „geführte Deformationen“, bei denen Formveränderungen lokal begrenzt bleiben, andererseits „ungeführte Deformationen“, die sich durch Selbstorganisation in der gesamten Zelle ausbreiten.

„Unsere Ergebnisse zeigen, dass lebende Zellen deutlich vielseitiger sind als bisher angenommen“, sagt Frey. „Diese Erkenntnisse könnten weitreichende Implikationen für die Entwicklung synthetischer Zellen und biomimetischer Materialien haben und neue Möglichkeiten für synthetische Biologie und zellbasierte Technologien eröffnen.“

LMU / RK

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Meist gelesen

Photo
08.11.2024 • NachrichtForschung

Musik als Zeitreihe

Analyse von musikalischen Tonhöhensequenzen ergibt interessante Unterschiede zwischen verschiedenen Komponisten und Musikstilen.

Themen